Stochastic Polynomial Interpolation for Uncertainty Quantification With Computer Experiments

نویسنده

  • Matthias Hwai Yong Tan
چکیده

Abstract: Multivariate polynomial metamodels are widely used for uncertainty quantification due to the development of polynomial chaos methods and stochastic collocation. However, these metamodels only provide point predictions. There is no known method that can quantify interpolation error probabilistically and design interpolation points using available data to reduce the error. We shall introduce the stochastic interpolating polynomial model, which overcomes these problems. A Bayesian approach that quantifies interpolation uncertainty through the posterior distribution of the output is taken.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification

Non-intrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification (UQ) due to their strong mathematical basis and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sa...

متن کامل

Simplex Elements Stochastic Collocation in Higher-Dimensional Probability Spaces

A Simplex Elements Stochastic Collocation (SESC) method is introduced for robust and efficient propagation of uncertainty through computational models. The presented non– intrusive Uncertainty Quantification (UQ) method is based on adaptive grid refinement of a simplex elements discretization in probability space. The approach is equally robust as Monte Carlo (MC) simulation in terms of the Ext...

متن کامل

Stochastic Collocation for Correlated Inputs

Abstract. Stochastic Collocation (SC) has been studied and used in different disciplines for Uncertainty Quantification (UQ). The method consists of computing a set of appropriate points, called collocation points, and then using Lagrange interpolation to construct the probability density function (pdf) of the quantity of interest (QoI). The collocation points are usually chosen as Gauss quadra...

متن کامل

Design under Uncertainty Employing Stochastic Expansion Methods

Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification due to their fast convergence properties and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampli...

متن کامل

Numerical Comparison of Leja and Clenshaw-Curtis Dimension-Adaptive Collocation for Stochastic Parametric Electromagnetic Field Problems

We consider the problem of approximating the output of a parametric electromagnetic field model in the presence of a large number of uncertain input parameters. Given a sufficiently smooth output with respect to the input parameters, such problems are often tackled with interpolation-based approaches, such as the stochastic collocation method on tensor-product or isotropic sparse grids. Due to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Technometrics

دوره 57  شماره 

صفحات  -

تاریخ انتشار 2015